

SliceNStitch: Continuous CP Decomposition of Sparse Tensor Streams

Taehyung Kwon*

Inkyu Park*

Dongjin Lee

Kijung Shin

Tensors are Everywhere

- Tensors are powerful tools for representing time-evolving multi-aspect data
- Multi-aspect data stream: a sequence of timestamped *M*-tuples $\{(e_n = (i_1, \dots, i_{M-1}, v_n), t_n)\}_{n \in \mathbb{R}}$
 - i_1, \dots, i_{M-1} : non-time mode coordinates
 - v_n : value of the event
 - t_n : time when e_n occurs

(source, destination, 1) Traffic history

(location, type, 1) Crime history

(user, product, color, quantity)

Purchase history

CANDECOMP/PARAFAC Decomposition (CPD)

- CPD gives a low-rank approximation $\widetilde{\mathcal{X}}$ of the tensor \mathcal{X}
- Given an *M*-mode tensor $\mathcal{X} \in \mathbb{R}^{N_1 \times \cdots \times N_M}$ and rank $R \in \mathbb{N}$,
 - $\mathcal{X} \approx \widetilde{\mathcal{X}} \equiv \sum_{r=1}^{R} A^{(1)}(:, r) \circ \cdots \circ A^{(M)}(:, r)$
 - where $A^{(1)}, \dots, A^{(M)}$: Factor matrices

• Goal of CPD: factor matrices that minimize the difference between ${\mathcal X}$ and $\widetilde{{\mathcal X}}$

$$\min_{A^{(1)},\dots,A^{(M)}} \left\| \mathcal{X} - \widetilde{\mathcal{X}} \right\|_{F}$$

Limitation of Common Tensor Modeling

- Dynamic tensors grow once per period
 - \rightarrow Outputs of CPD are also updated once per period
- To perform CPD continuously for real-time application,
 - One can make the granularity of the time mode extremely fine

Limitation of Common Tensor Modeling

- Problems of fine-grained tensor modelings
 - Degradation of fitness
 - Increase the number of parameters
 - ... Not suitable for real-time application!

	Coarse-grained	Fine-grained
Update Interval	Long (💎)	Short (
Parameters	Few (👍)	Many (🖓)
Fitness	High (诌)	Low (ም)

Our Problem: Continuous CP Decomposition

- How can we continuously analyze multi-aspect data streams using CPD?
 - Given a multi-aspect data stream
 - Update its CP decomposition instantly in response to each new tuple in the stream
 - Without having to wait for the current period to end

- Introduction
- Problem Definition
- Data Model: Continuous Tensor Model
- Optimization Algorithms: SliceNStitch
- Experiment Results
- Conclusions

Proposed Tensor Model

• Continuous Tensor Model

• The modeled tensor window and units evolve at each time

Tensor window at time 3:00:00

Tensor window at time 3:00:01

Event-driven Implementation

- For the tensor window $\mathcal X$,
- a tuple $(e_n = (i_1, \dots, i_{M-1}, v), t_n)$ causes an event:

- Introduction
- Problem Definition
- Data Model: Continuous Tensor Model
- Optimization Algorithms: SliceNStitch
- Experiment Results
- Conclusions

SliceNStitch-Matrix (SNS_{MAT})

Common Outline of the Other Algorithms: Time Mode

Common Outline of the Other Algorithms: Non-Time Mode

For the time mode,

- Approximate \mathcal{X} as $\widetilde{\mathcal{X}}$ (the output of CP decomposition) and solve the least square problem
- Computation is proportional to the number of non-zeros in $\Delta \boldsymbol{\mathcal{X}}$

For non-time modes,

- Solve the original problem for only a single row
- Time complexity is proportional to the number of non-zeros in S

Pros

1. Significantly faster than SNS_{MAT}

Cons

- 1. Numerically unstable
- 2. Slow downs if many non-zeros are of the same index

SliceNStitch-Random: SNS_{RND}

- Given a threshold θ
 - If the number of non-zeros in $S \leq \theta$ then solve the original problem
 - Else
 - Approximate \mathcal{X} as $\widetilde{\mathcal{X}}$
 - correcting at most θ randomly chosen entries in $\widetilde{\mathcal{X}}$ to \mathcal{X}
 - Solve the least square problem
- Time complexity is proportional to θ

Pros

1. Time complexity becomes constant

Cons

00

- 1. Numerically unstable
- 2. Reduction in the quality of the solution compared to $\ensuremath{\text{SNS}_{\text{VEC}}}$

SliceNStitch-Stable: SNS_{VEC}^+ and SNS_{RND}^+

- Problem: $\ensuremath{\mathsf{SNS}_{\mathsf{VEC}}}$ and $\ensuremath{\mathsf{SNS}_{\mathsf{RND}}}$ are unstable
 - Many products (e.g. $\bigcirc_{i\neq m} A^{(i)}$ and $*_{i\neq m} A^{(m)T} A^{(m)}$) are required
 - These result in too large numbers and impair the accuracy of the calculation
- Solution: update entries one by one, and clip each update value if it is larger than a threshold η

Guarantees that the updated entry does not increase the objective function although it is clipped

- Introduction
- Problem Definition
- Data Model: Continuous Tensor Model
- Optimization Algorithms: SliceNStitch
- Experiment Results
- Conclusions

Experiments Settings

• 4 tensors from traffic and crime data

Name	Size	# Non-zeros
Divvy Bikes	673 x 673 x 525594 [minutes]	3.82M
Chicago Crime	77 x 32 x 148464 [hours]	5.33M
New York Taxi	265 x 265 x 5184000 [seconds]	84.39M
Ride Austin	219 x 219 x 24 x 285136 [minutes]	0.89M

- 4 baselines that update CPD periodically
 - ALS [CC70], onlineSCP [ZEB18], CP-stream [SHSK18], NeCPD [ASZ20]

SliceNStitch is Accurate

SliceNStitch is Accurate

72 ~ 100% relative fitness to the most accurate baseline

SliceNStitch is Fast

SNS^+_{RND} is up to 464 times faster than CP-stream

SliceNStitch is Scalable

The total runtime of all SliceNStitch versions was linear in the number of events.

Effect of Sampling Parameter θ (for SNS_{RND} and SNS⁺_{RND})

As θ increases, the fitness increases with diminishing returns

Effect of Sampling Parameter θ (for SNS_{RND} and SNS⁺_{RND})

As θ increases, runtime grows linearly

Effect of Clipping Value η (for SNS^+_{VEC} and SNS^+_{RND})

The fitness is insensitive to η as long as η is small enough

Practitioner's Guide

- We do not recommend SNS_{VEC} and SNS_{RND} due to numerical errors
- We recommend using the most accurate version within your runtime budget

• If SNS_{RND}^+ is chosen, increase θ enough within your runtime budges and the second second

- Introduction
- Problem Definition
- Data Model: Continuous Tensor Model
- Optimization Algorithms: SliceNStitch
- Experiment Results

Conclusion

Continuous CPD with SliceNStitch achieved **near-instant updates**, **high fitness**, and a **small number of parameters**.

