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Tensors are Everywhere

* Tensors are powerful tools for representing time-evolving multi-aspect data

* Multi-aspect data stream:
a sequence of timestamped M-tuples {(e,;, = (i1,***,iy—1,Vn), tn )Iner
® i1,**,lpy—1: hon-time mode coordinates
* v,:value of the event
* t,: time when e,, occurs

)

®)

(source, destination, 1) (location, type, 1) (user, product, color, quantity)
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CANDECOMP/PARAFAC Decomposition (CPD)

* CPD gives a low-rank approximation X of the tensor X

 Given an M-mode tensor X’ € RN1**Nm gnd rank R € N,
c X=X =XF AW, ) 00 AU, )

where A(l), ,A(M): Factor matrices

/4(3)(: 1) /A(3)(: ,2) / AB)(:,3)

—/ — I—
o AP 1) 4 AD(G,2) L4 AP(,3)

AV, 1) AN, 2) AN, 3)

 Goal of CPD: factor matrices that minimize the difference between X and X

min _||X — X|
A ... A(M) F




Limitation of Common Tensor Modeling

* Dynamic tensors grow once per period
— Outputs of CPD are also updated once per period

* To perform CPD continuously for real-time application,
* One can make the granularity of the time mode extremely fine
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Limitation of Common Tensor Modeling

* Problems of fine-grained tensor modelings

Coarse-grained

Fine-grained

* Degradation of fitness Update Interval Long (&) Short (3)
* Increase the number of parameters Parameters Few (/B) Many (€7)
.". Not suitable for real-time application! |Fitness High (B) Low (%)
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Our Problem: Continuous CP Decomposition

* How can we continuously analyze multi-aspect data streams using CPD?
* Given a multi-aspect data stream
* Update its CP decomposition instantly in response to each new tuple in the stream

* Without having to wait for the current period to end
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Proposed Tensor Model

e Continuous Tensor Model
e The modeled tensor window and units evolve at each time
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Event-driven Implementation

* For the tensor window X,
* atuple (e, = (iy,**,iy—1, V), t,,) causes an event:
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SliceNStitch-Matrix (SNSyat)

Use all Non-zero Entries in X
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Common Outline of the Other Algorithms: Time Mode

Tensor Units Affected by e
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Common Outline of the Other Algorithms: Non-Time Mode

Slice Updated by e
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SliceNStitch-Vector: SNSygc

For the time mode,

« Approximate X as X (the output of CP decomposition) and solve the least
square problem

 Computation is proportional to the number of non-zeros in AX
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SliceNStitch-Vector: SNSygc

For non-time modes,
* Solve the original problem for only a single row

* Time complexity is proportional to the number of non-zeros in S

S: Slice Affected by the Current Event

15t Mode Factor Pros |
Matrix 4D / / 1. Significantly faster than SNSyaT @
Cons

1. Numerically unstable -
2. Slow downs if many non-zeros are of \0::)
the same index
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Row to be Affected Entries by the Current Event
Updated in AV




SliceNStitch-Random: SNSrnp

e Given a threshold @

* Ifthe number of non-zerosin S < @ S: Slice Affected by the Current Event
then solve the original problem

* Else
* Approximate . as
e correcting at most 8 randomly
chosen entries in X to
e Solve the least square problem

* Time complexity is proportional to 6

~

Pros @ Cons \3:')

1. Time complexity becomes constant 1. Numerically unstable
2. Reduction in the quality of the solution
compared to SNSygc




SliceNStitch-Stable: SNS{ ¢ and SNSE\p

* Problem: SNSygc and SNSgnp are unstable

: T
* Many products (€.8. ©;zm AW and *;.,, A" A(M)) are required
* These result in too large numbers and impair the accuracy of the calculation

 Solution: update entries one by one, and clip each update value if it is larger

than a threshold n

SNSyec and SNSgxp

in the row at once

=

SNS{Ec and SNSEnp
: Update all the entries : Update row entries one

Guarantees that the updated
entry does not increase the
objective function although it is
clipped
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Experiments Settings

e 4 tensors from traffic and crime data

Name Size # Non-zeros
Divvy Bikes 673 x 673 x 525594 [minutes] 3.82M
Chicago Crime |77 x 32 x 148464 [hours] 5.33M

New York Taxi | 265 x 265 x 5184000 [seconds] 84.39M
Ride Austin 219 x 219 x 24 x 285136 [minutes] | 0.89M

* 4 baselines that update CPD periodically
e ALS [CC70], onlineSCP [ZEB18], CP-stream [SHSK18], NeCPD [ASZ20]




SliceNStitch is Accurate
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SliceNStitch is Accurate

. SNSRND . SN8+RND . SNSVEC . SNS+VEC . SNSMAT . CP_Stream . On“neSCP
NeCPD (1) M NeCPD (10) ALS

Average
Relative Fithess

Divvy Bikes Chicago Crime  New York Taxi Ride Austin

72 ~ 100% relative fitness to the most accurate baseline




SliceNStitch is Fast

. SNSRND . SN8+RND . SNSVEC . SN8+VEC . SNSMAT . CP_Stream . On“neSCP
NeCPD (1) M NeCPD (10) ALS

U_pdate Time

Divvy Bikes Chicago Crime  New York Taxi Ride Austin

SNSENp is up to 464 times faster than CP-stream




SliceNStitch is Scalable

The total runtime of all SliceNStitch versions was linear in the number of events.

Running Time
(Seconds)

1 2 3 4 5 1 2 3 4 5 12 3 4 5 12 3 4 5
Divvy Bikes Chicago Crimes New York Taxi Ride Austin

The number of events (x 10°)




Effect of Sampling Parameter 0 (for SNSgnp and SNSE\p)
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As 0 increases, the fitness increases with diminishing returns




Effect of Sampling Parameter 0 (for SNSgnp and SNSE\p)
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Effect of Clipping Value n (for SNS{z- and SNSZ\p)
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Practitioner’s Guide

* We do not recommend SNSygc and SNSgnp due to numerical errors

* We recommend using the most accurate version within your runtime budget

SNSEND SNS{EC SNSmAT
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* If SNSEnp is chosen, increase 8 enough within your runtime budggxﬁﬁ
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Conclusion

Continuous CPD with SliceNStitch achieved near-instant updates, high
fitness, and a small number of parameters.

O SliceNstitch (Proposed) == CP-stream /\ OnlineSCP ALS
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