

TENSORCODEC: Compact Lossy Compression of Tensors without Strong Data Assumptions

Best Student Paper Runner-up

Taehyung Kwon

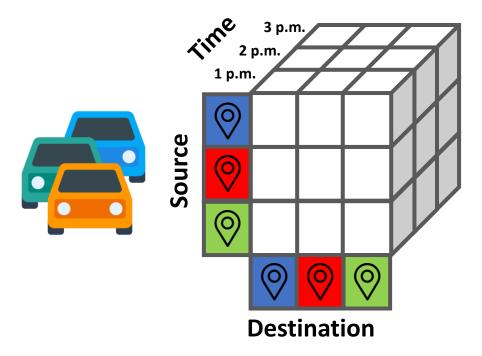
Jihoon Ko

Jinhong Jung

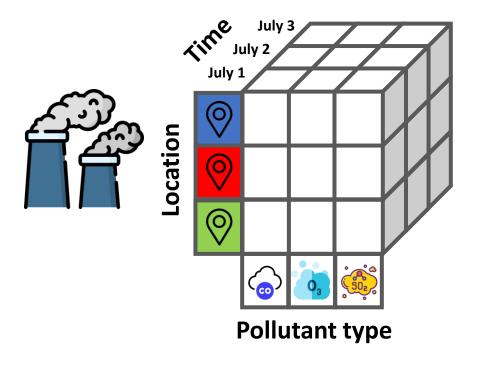
Kijung Shin

Various data can be expressed as tensors

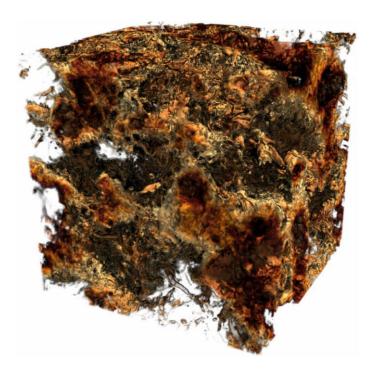
Traffic volumes



Air pollutant measurements



Why do we need to compress tensors?



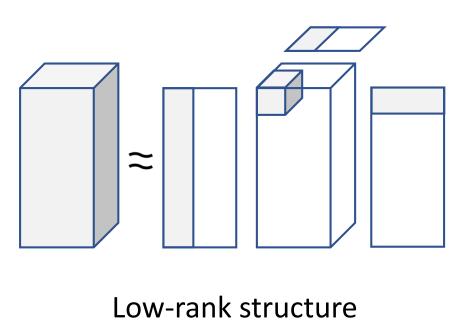
E.g.,) Scientific simulation data

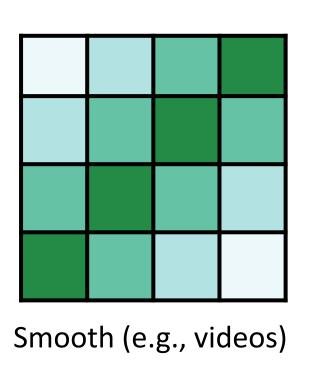
1. Network I/O

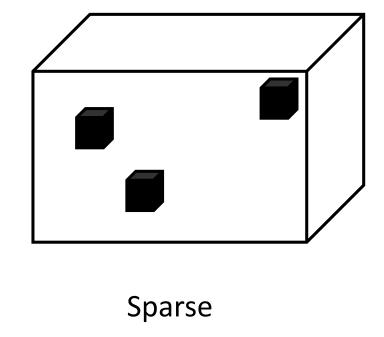
2. Memory requirement

Limitations of existing approaches

• Existing methods heavily rely on assumptions on input data.

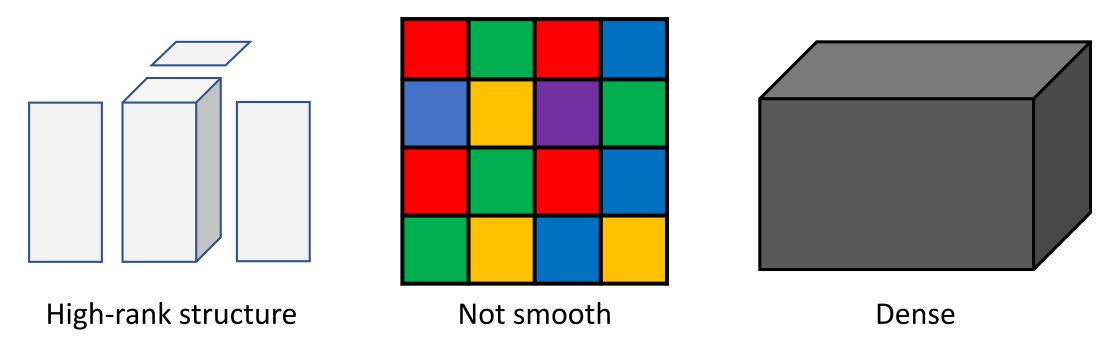






Our objective: compression w/o assumptions

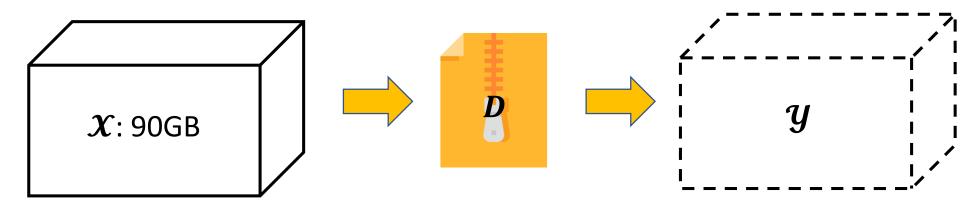
• However, not all real-world tensors meet the assumptions.



• How can we compress such general tensors?

Problem definition

Lossy compression of tensors without any data assumption.



- Given: a general tensor $X \in \mathbb{R}^{N_1 \times \cdots \times N_d}$.
- Find: the compressed data *D*.
- To minimize: (1) the size of D and (2) the reconstruction error $\| \boldsymbol{X} \boldsymbol{Y} \|$ where \boldsymbol{Y} is the tensor reconstructed from D.

Outline

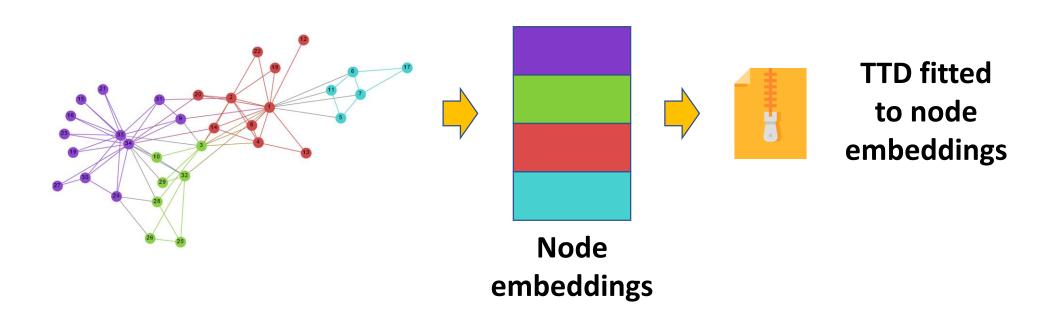
- 1. Introduction.
- 2. Preliminaries.
- 3. Proposed method.
- 4. Experiments.
- 5. Conclusion.

Tensor-Train decomposition (TTD)

- Our approach is founded on the Tensor-Train decomposition (TTD).
- TTD efficiently compresses large matrices.

Introduction

• E.g., Compression of node embeddings for efficiency of GNNs

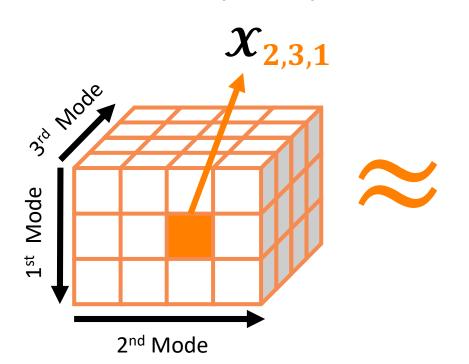


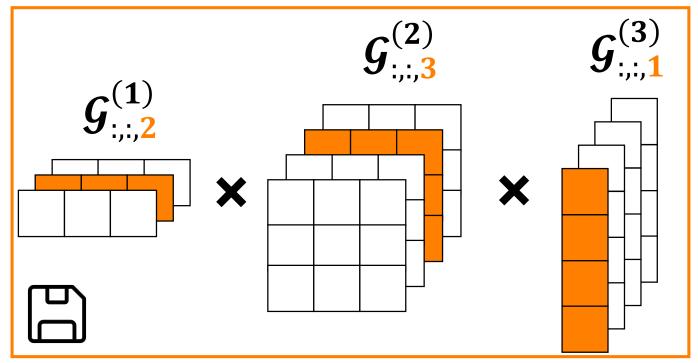
Introduction

Tensor-Train decomposition (TTD)

- TT-cores (G) can be **stored** instead of the input tensor.
- They can be used to approximately restore the input tensor.

→ lossy compression.





Outline

- 1. Introduction.
- 2. Preliminaries.
- 3. Proposed method.
- 4. Experiments.
- 5. Conclusion.

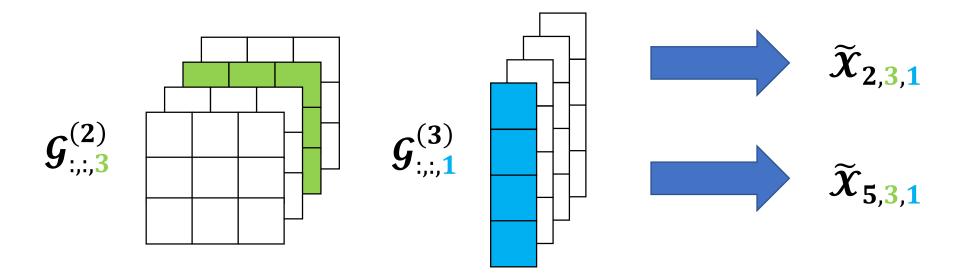
Overview of TensorCodec

• Our compression algorithm, **TensorCodec**, makes TTD more expressive, concise, and accurate.

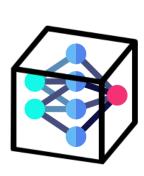
- Q1 Expressiveness: How can we enhance the expressiveness of TTD?
- Q2 Conciseness: How can we reduce the parameters of TTD?
- Q3 Accuracy: How can we improve approximation accuracy of TTD?
- TensorCodec employs Neural TTD (3), Folding (3), and reordering (4)

Limited Expressiveness of TTD

TT-cores are fixed for all tensor entries.

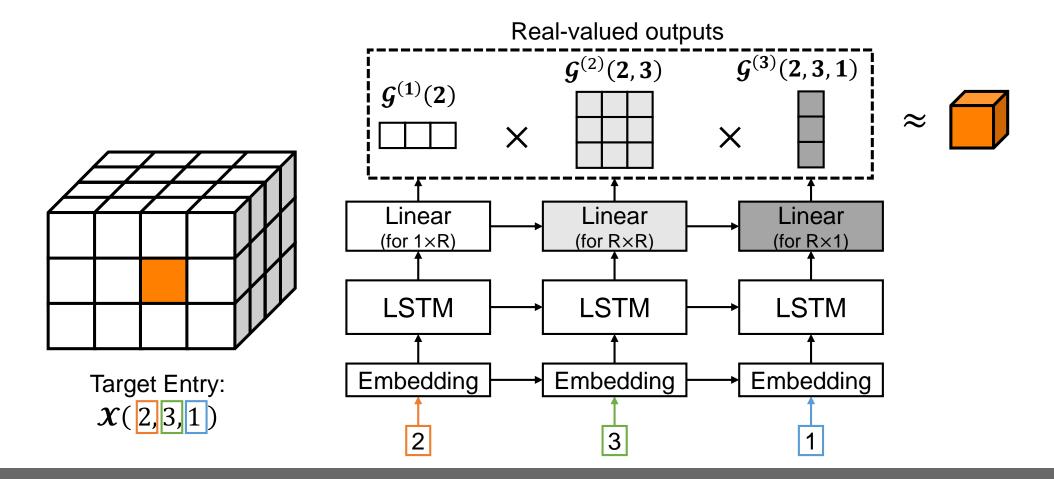


How can we make TT-cores adaptive to each tensor entry?



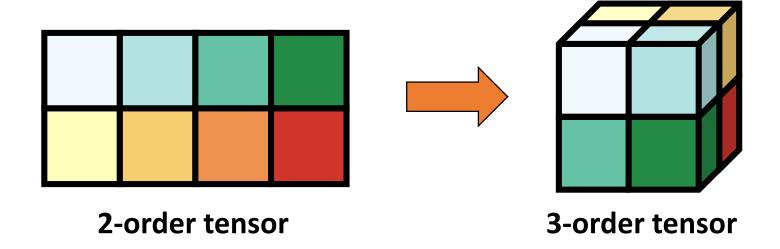
A1. Neural TTD (NTTD)

• We make TT-cores adaptive to each entry using LSTM returning TT-cores.



A2. Folding

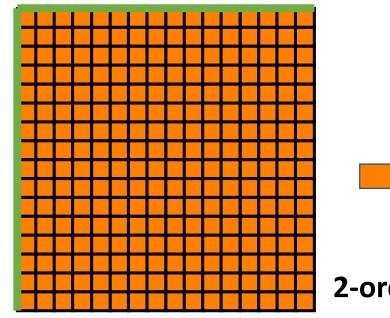
• Folding is the process of mapping each entry of a low-order tensor to an entry of a high-order tensor by splitting dimensions.



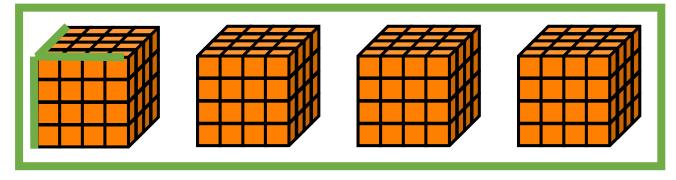
A2. Folding

- The sum of the mode-sizes of a tensor decreases by folding.
- The number of parameters of NTTD is proportional to the sum.

$$16 \times 2 = 32$$



$$4 \times 4 = 16$$

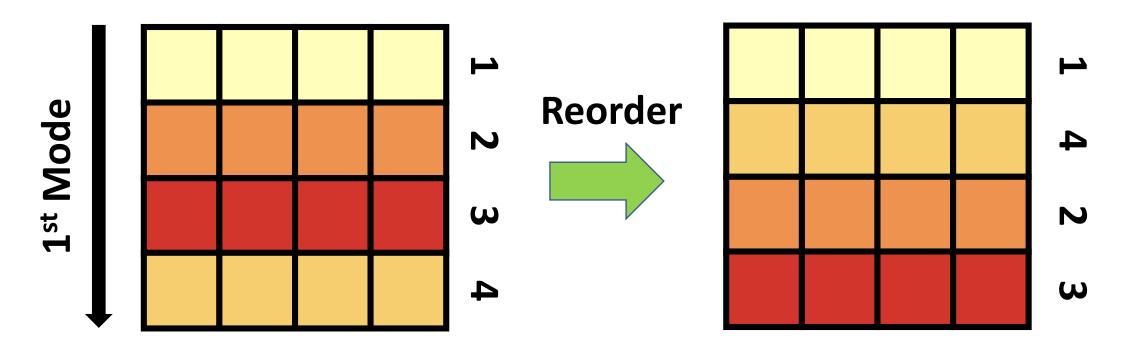


2-order tensor

4-order tensor

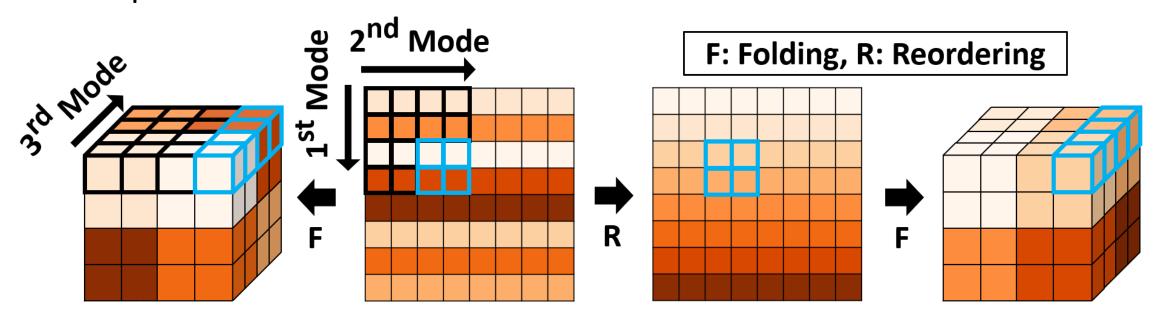
1 A3. Reordering

 Reordering is the process of changing the orders of indices of all modes so that the similar entries are located nearby.



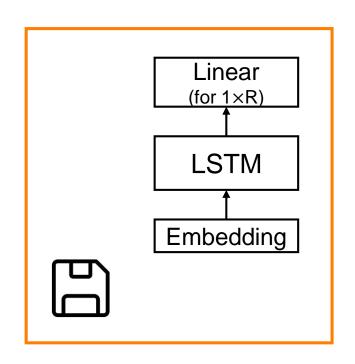
1 A3. Reordering

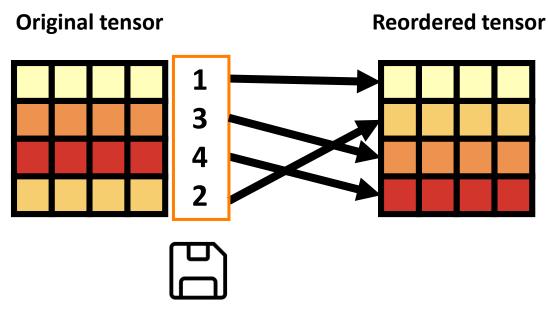
- The closer the entries are in the original tensor, the closer they are in the folded tensor.
- Reordering helps the model fit the tensor because they share more inputs to LSTM.



Outputs of TensorCodec

• The outputs of compression are (1) neural-network parameters and (2) an index mapping after reordering

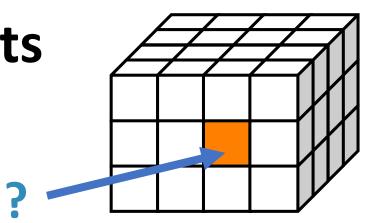




neural network parameters

Index mapping

Reconstruction from the outputs



(2, 3, 1)

Reordered indices

(12, 23, 2)

Folded indices

(2, 4, 6, 3, 2)

Reconstructed value

Summary: contributions of each component

A1. NTTD Better Expressiveness of TTD

A2. Folding — Better Conciseness of NTTD

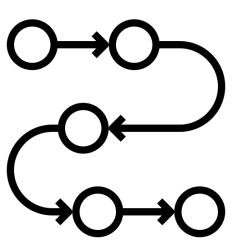
↑ A3. Reordering → Better Fitness of NTTD → Better Accuracy

Overall training process for fitting the input

1. Initialize orders (A3-1).

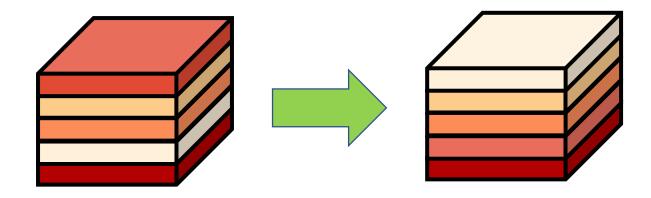
2. Update NTTD using a gradient descent.

3. Update the orders as in (A3-2).

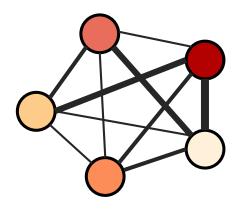


A3-1. Order initialization

• Our goal: minimize the differences between neighboring slices.

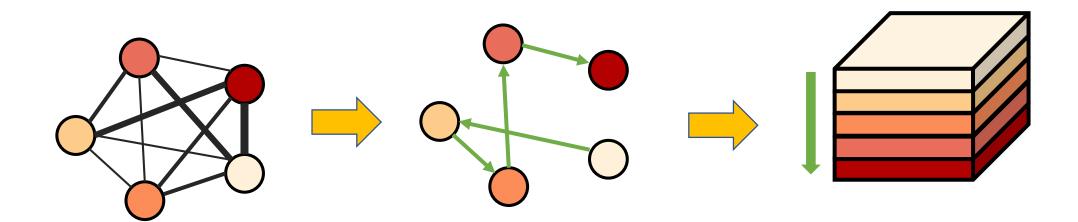


- Consider a complete graph.
 - Nodes: slices (i.e., mode indices)
 - Edge weights: L2 distances between the slices.



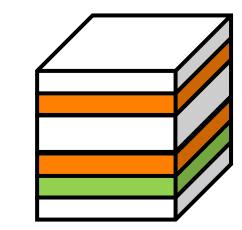
A3-1. Order initialization

- Find a short cycle with a 2-approximate solution of the TSP.
- Then, remove the largest-weight edge.
- The path becomes the order of slices.

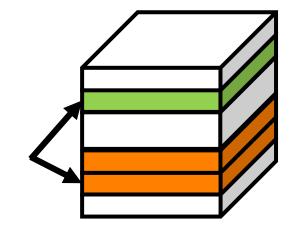


A3-2. Order update using hill climbing

• Finding similar pairs of slices using localitysensitive hashing (LSH) for L2 distance.



• Swap one slice with the neighboring slice of the other if fitting loss decreases.



• Repeat the above steps.

Outline

- 1. Introduction.
- 2. Preliminaries.
- 3. Proposed method.
- 4. Experiments.
- 5. Conclusion.

Experimental settings

• Eight real-world datasets: six 3-order tensors and two 4-order tensors.

Air quality measurement

Traffic volume

Video feature

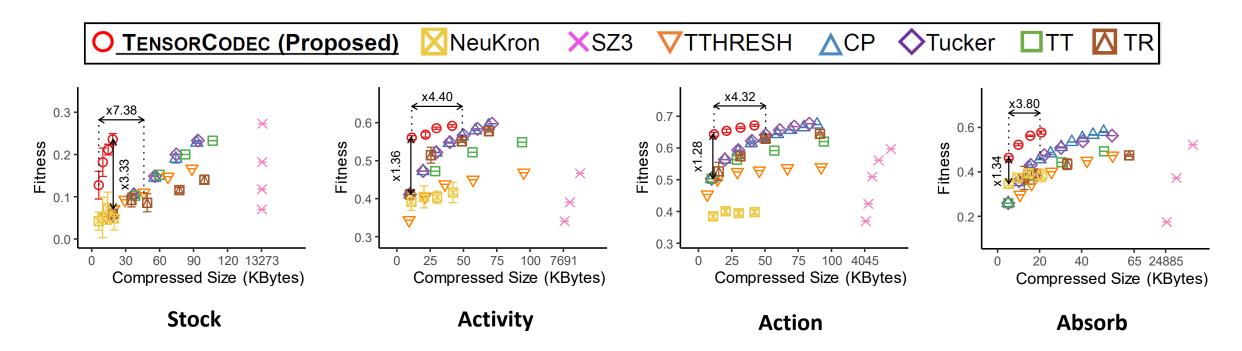
Stock datum

Experimental settings

- Lossy-compression baselines:
 - Low-rank tensor compression methods
 - CP, Tucker, TT, and TR decompositions.
 - Smooth-tensor compression methods
 - TTHRESH and SZ3.
 - Sparse-tensor compression methods
 - NeuKron.

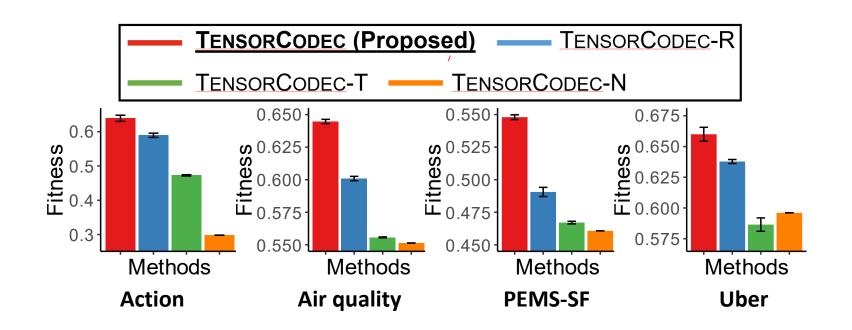
TensorCodec is concise and precise

- The compressed outputs of TensorCodec is up to 7.38x smaller.
- TensorCodec shows up to 3.33x better accuracy.



All components of TensorCodec are useful

• TensorCodec outperforms all of its variants with missing components.



TensorCodec (TC)-R:

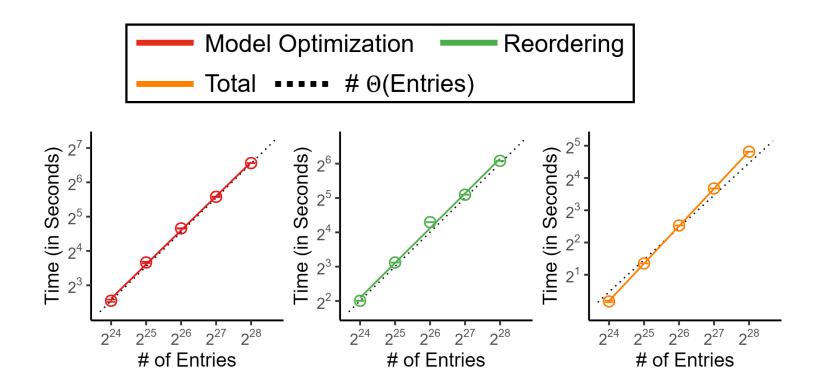
variant of TC without reordering.

TC-T: variant of TC-R without order initialization.

TC-N: variant of TC-T without a neural network.

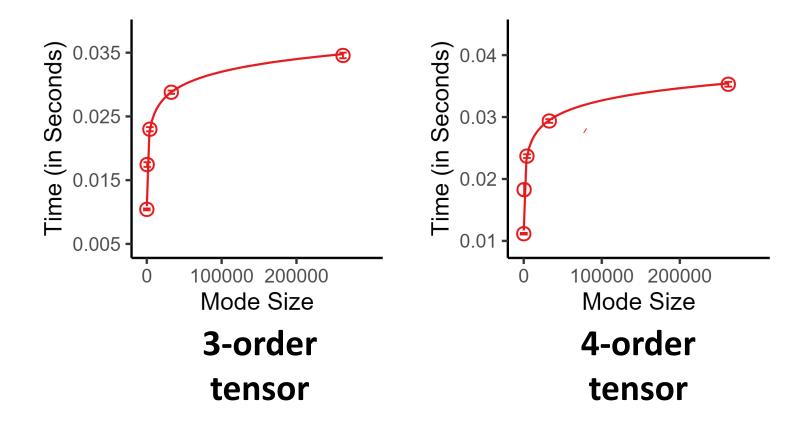
TensorCodec is scalable

• Compression time of TensorCodec is linear in the tensor entry count.



TensorCodec is scalable

• Its reconstruction time is sub-linear in the tensor entry count.



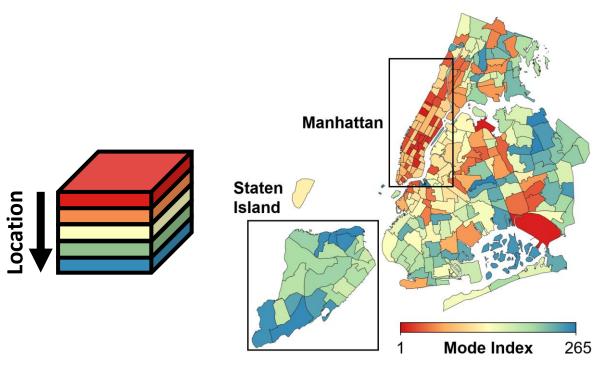
Further Analysis

Which slices are closely ordered by TensorCodec?

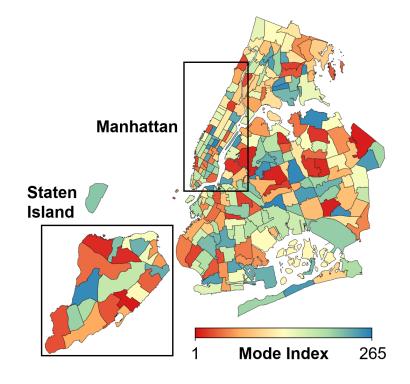
Can TensorCodec approximate high-rank tensors with few parameters?

Reordering by TensorCodec is effective

• Reordered results of TensorCodec align with our intuition.



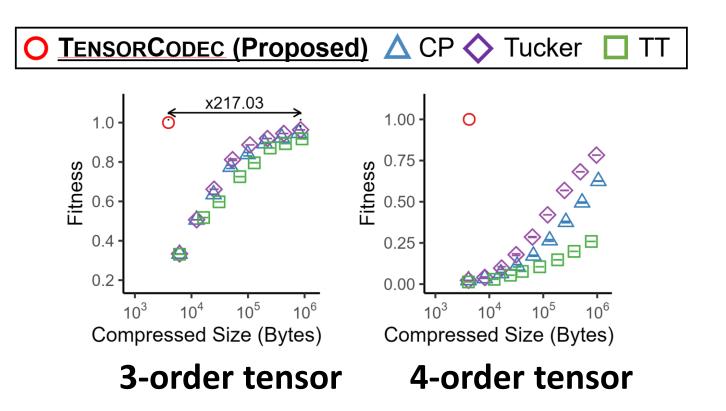
Reordering by TensorCodec



Reordering by NeuKron

TensorCodec is expressive

• TensorCodec fits high-rank tensors with a small number of parameters.



Outline

- 1. Introduction.
- 2. Preliminaries.
- 3. Proposed method.
- 4. Experiments.
- 5. Conclusion.

Conclusion

- We propose **TensorCodec** for **lossy compression** of general tensors.
- TensorCodec is concise, accurate, and scalable.

